

US 20200098316A1

(19) United States

(12) Patent Application Publication

YOKOYAMA et al.

(10) Pub. No.: US 2020/0098316 A1

(43) Pub. Date: Mar. 26, 2020

(54) DISPLAY DEVICE DRIVE METHOD AND DISPLAY DEVICE

(71) Applicant: Sharp Kabushiki Kaisha, Sakai City, Osaka (JP)

(72) Inventors: Makoto YOKOYAMA, Sakai City (JP); Fumiuki KOBAYASHI, Sakai City (JP); Junichi YAMADA, Sakai City (JP)

(21) Appl. No.: 16/494,810

(22) PCT Filed: Mar. 22, 2017

(86) PCT No.: PCT/JP2017/011348

§ 371 (c)(1),

(2) Date: Sep. 17, 2019

Publication Classification

(51) Int. Cl.

G09G 3/3258 (2006.01)

G09G 3/20 (2006.01)

G09G 3/3275 (2006.01)

G09G 3/3266 (2006.01)

(52) U.S. Cl.

CPC G09G 3/3258 (2013.01); G09G 3/2003

(2013.01); G09G 3/3275 (2013.01); G09G

2300/0819 (2013.01); G09G 2300/0842

(2013.01); G09G 2320/0257 (2013.01); G09G

2330/027 (2013.01); G09G 3/3266 (2013.01)

(57) ABSTRACT

Provided are a display device drive method and a display device, both of which allow a pixel circuit to be discharged without leaving any electric charge in an OFF sequence for powering off the display device.

During an OFF sequence period, a first node N1 is set to a first ground potential V_{gnd1} , which is a potential higher than an initialization potential V_{ini} . As a result, even when a second ground potential V_{gnd2} is supplied through a data line D_j to a second conductive terminal of a drive transistor T1, a gate terminal of the drive transistor T1 is not charged with a gate-to-source voltage V_{gs} . Therefore, an organic EL display device 1 is powered off with the gate terminal of the drive transistor T1 being charged with the first ground potential V_{gnd1} leaving no electric charge in a pixel circuit 11 after the power off.

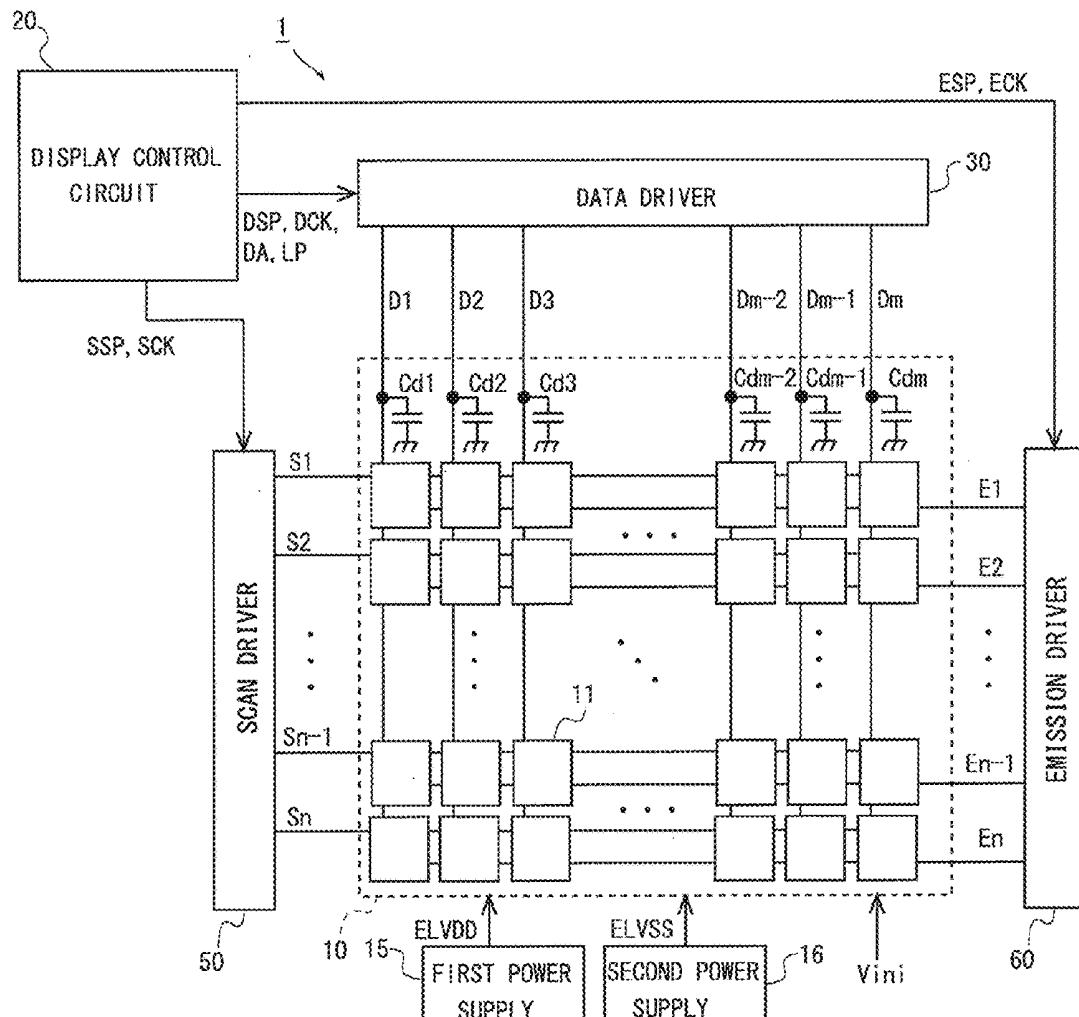


FIG. 1

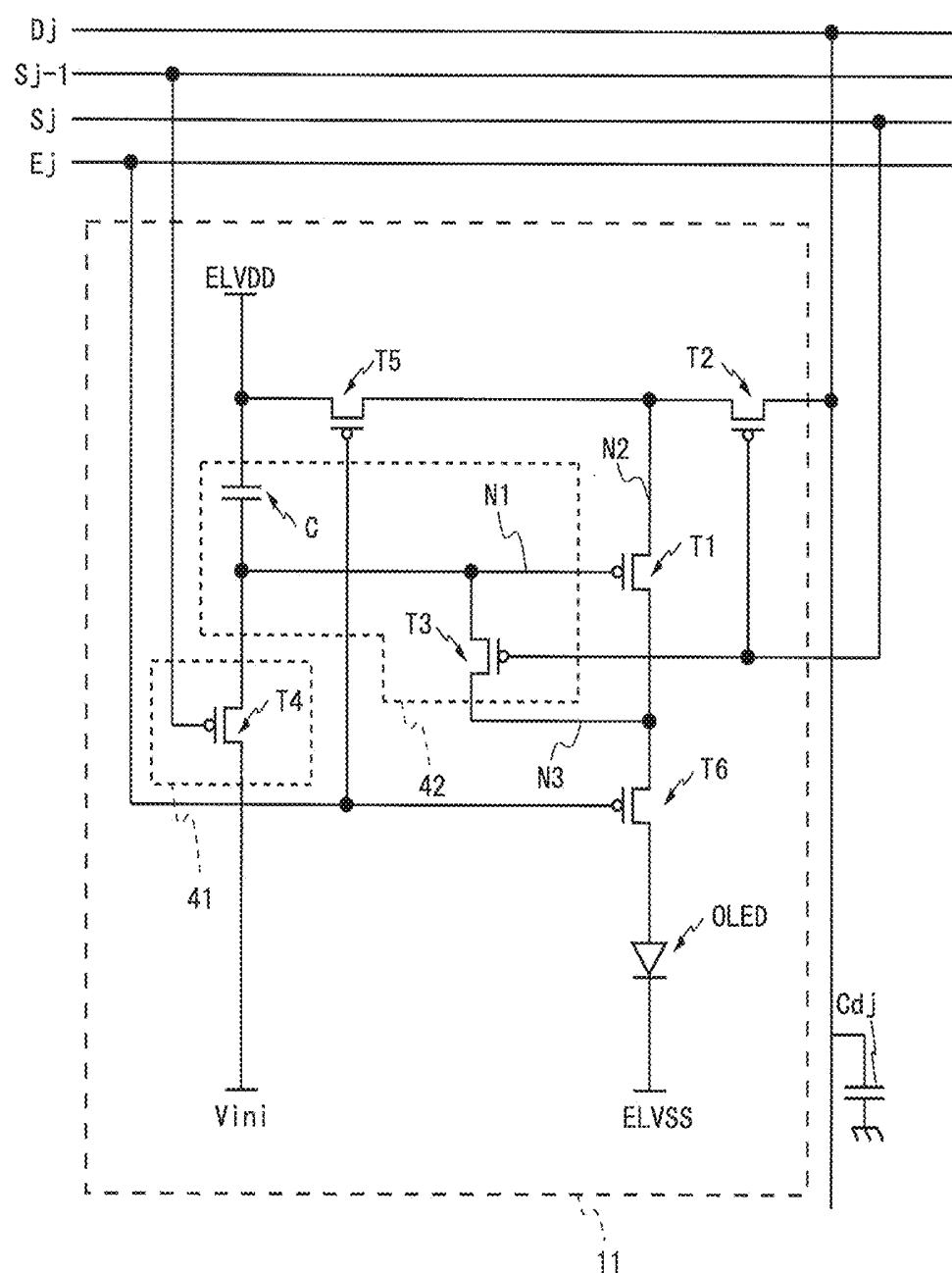
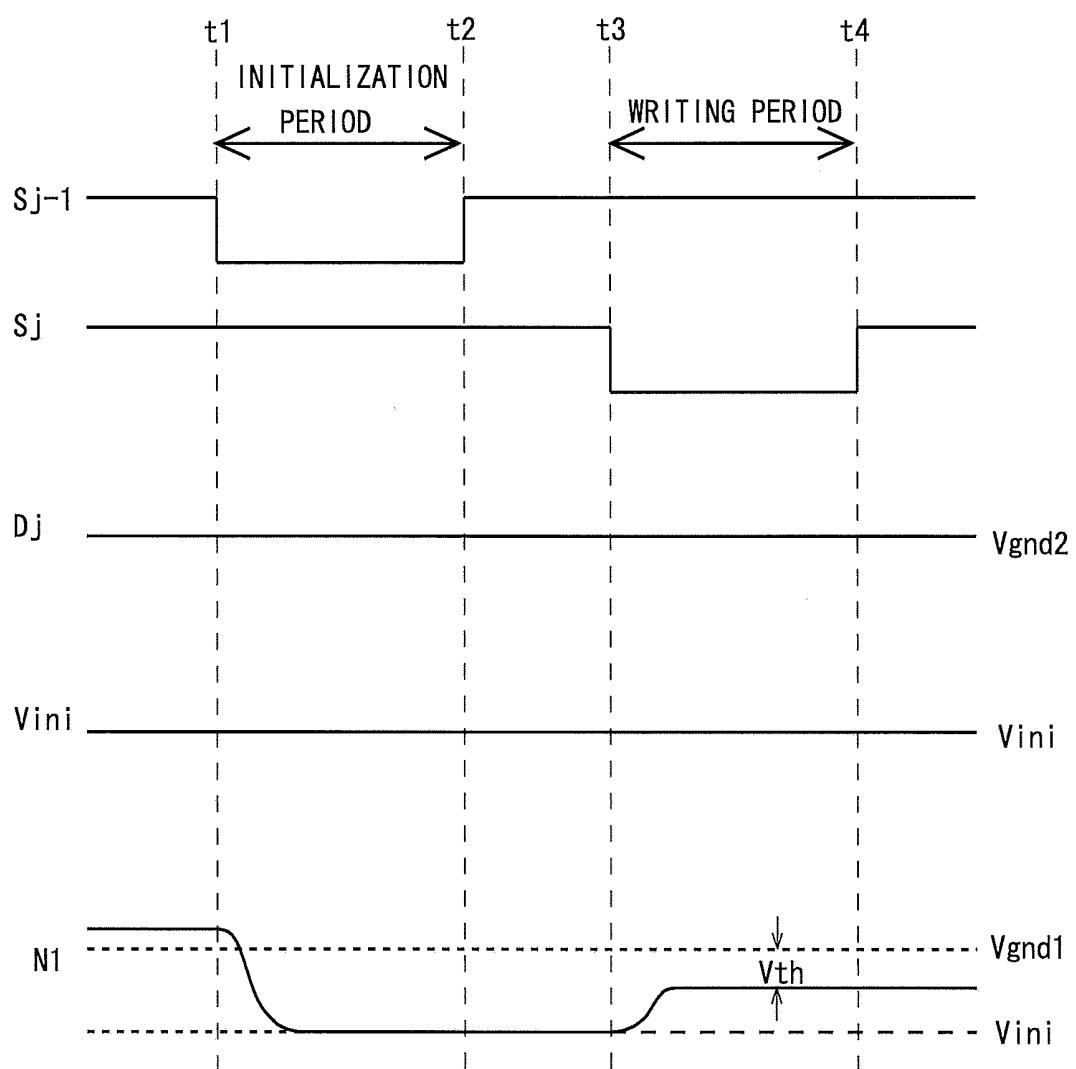



FIG. 2

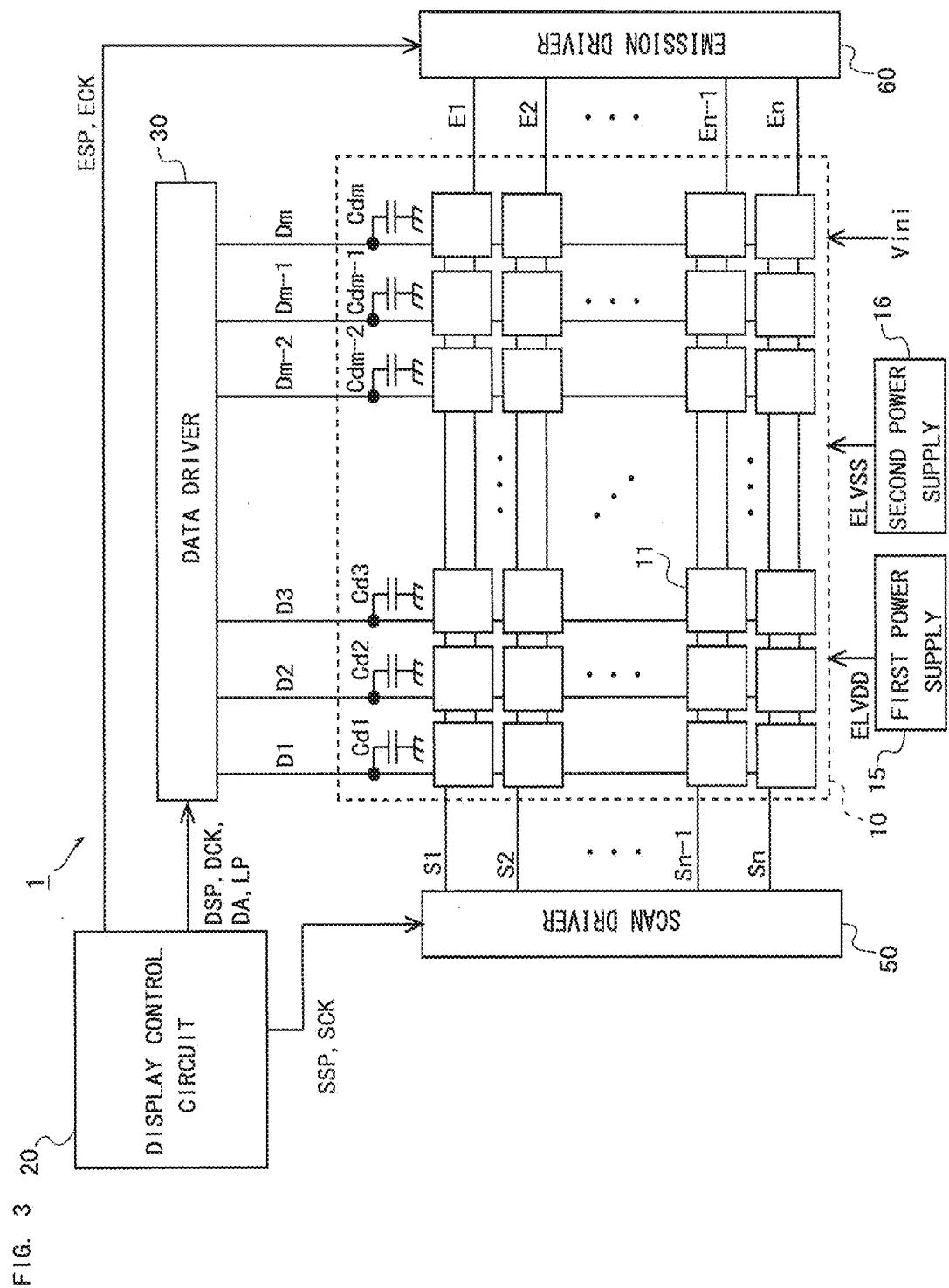


FIG. 4

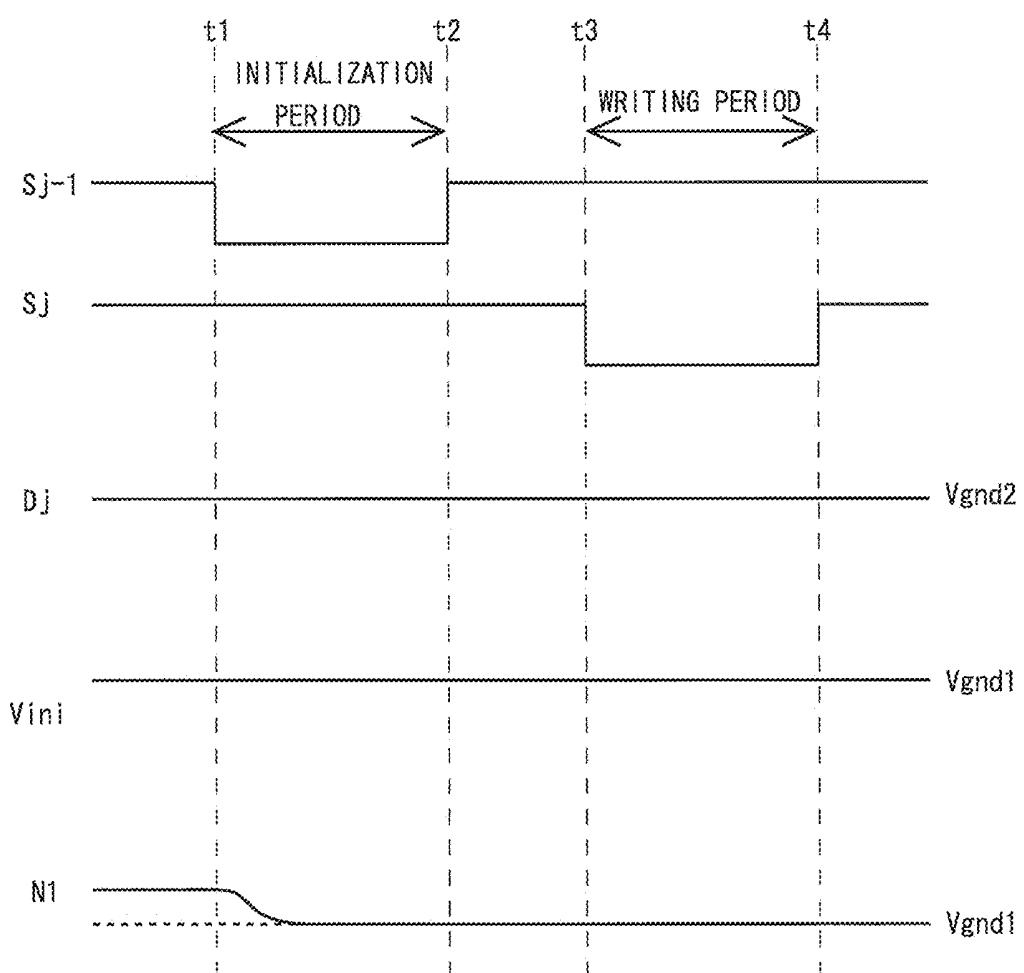


FIG. 5

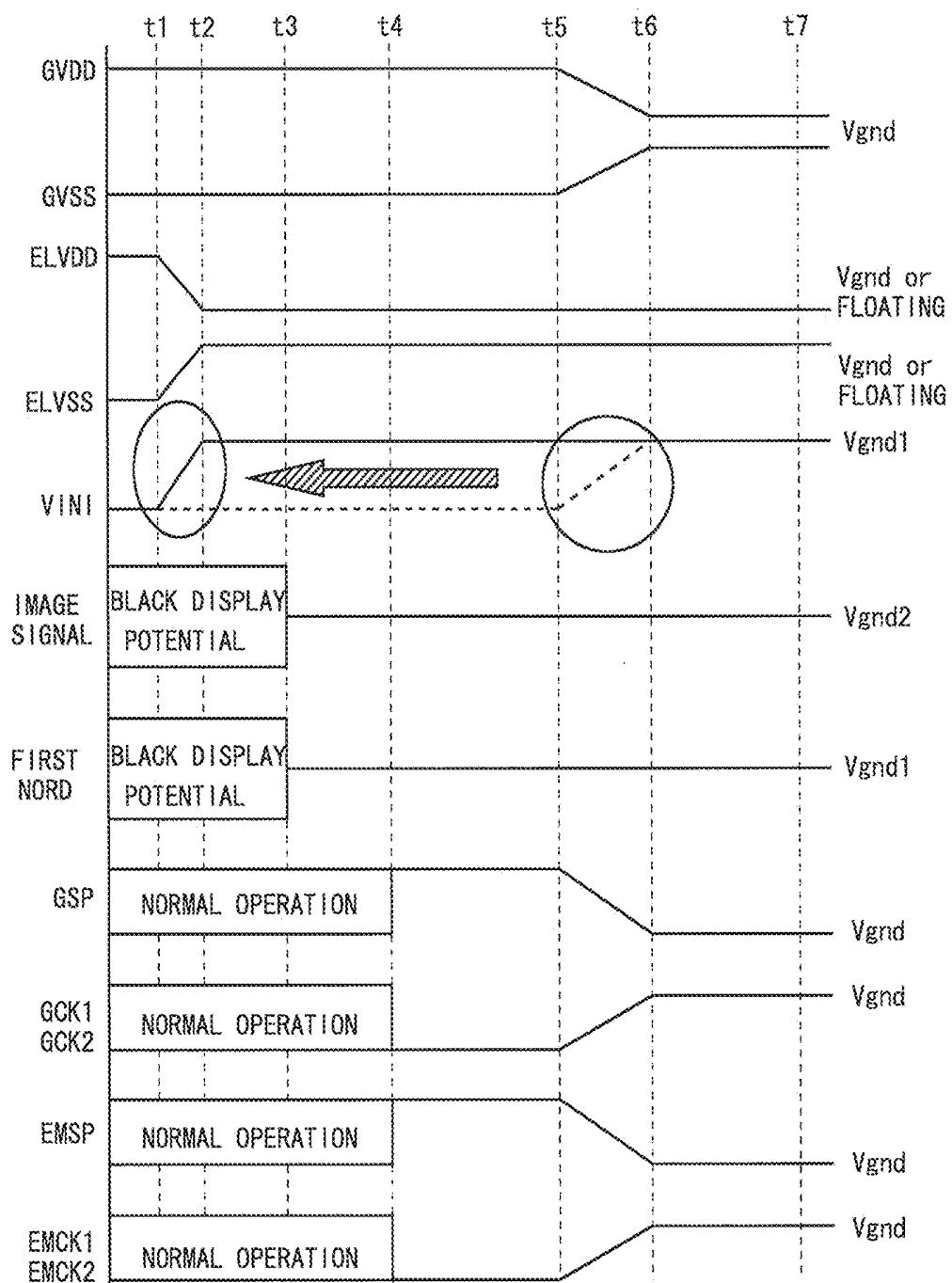


FIG. 6

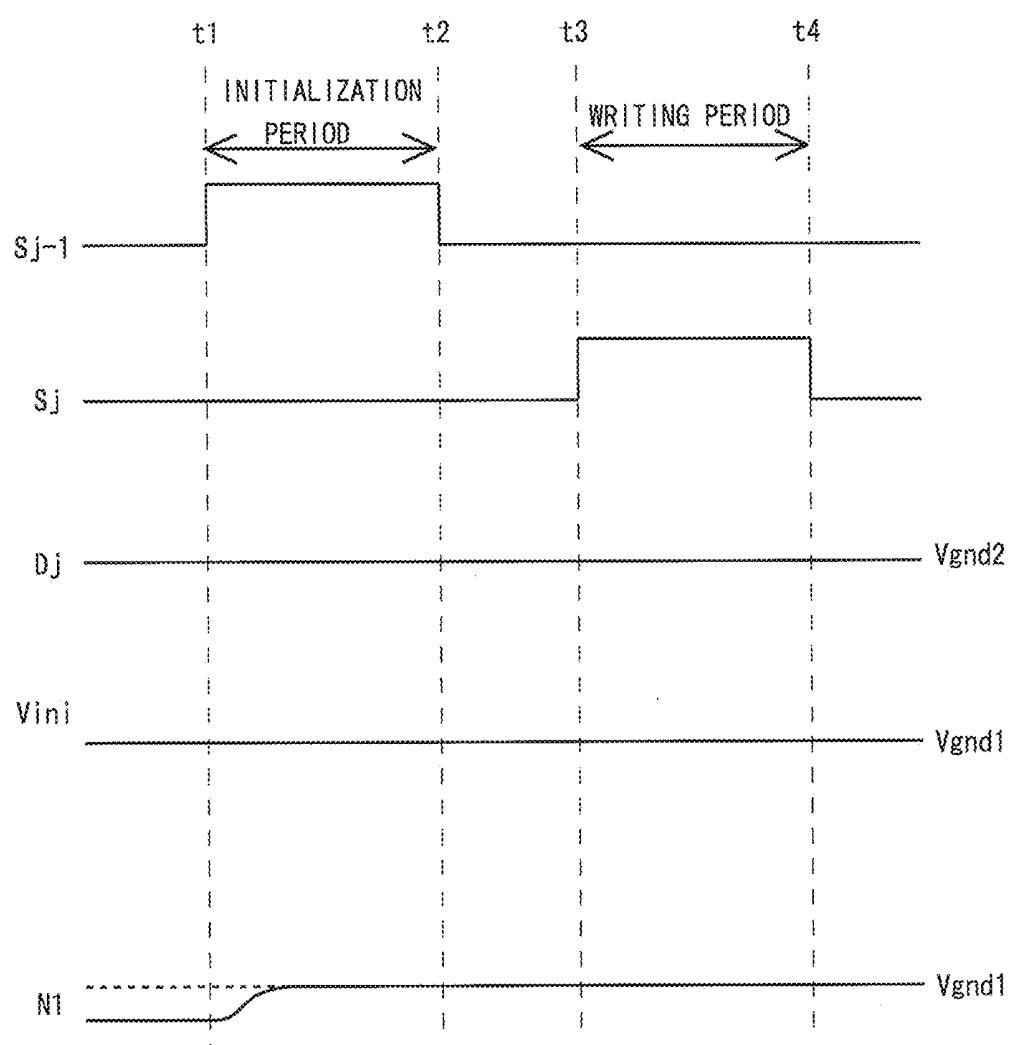


FIG. 7

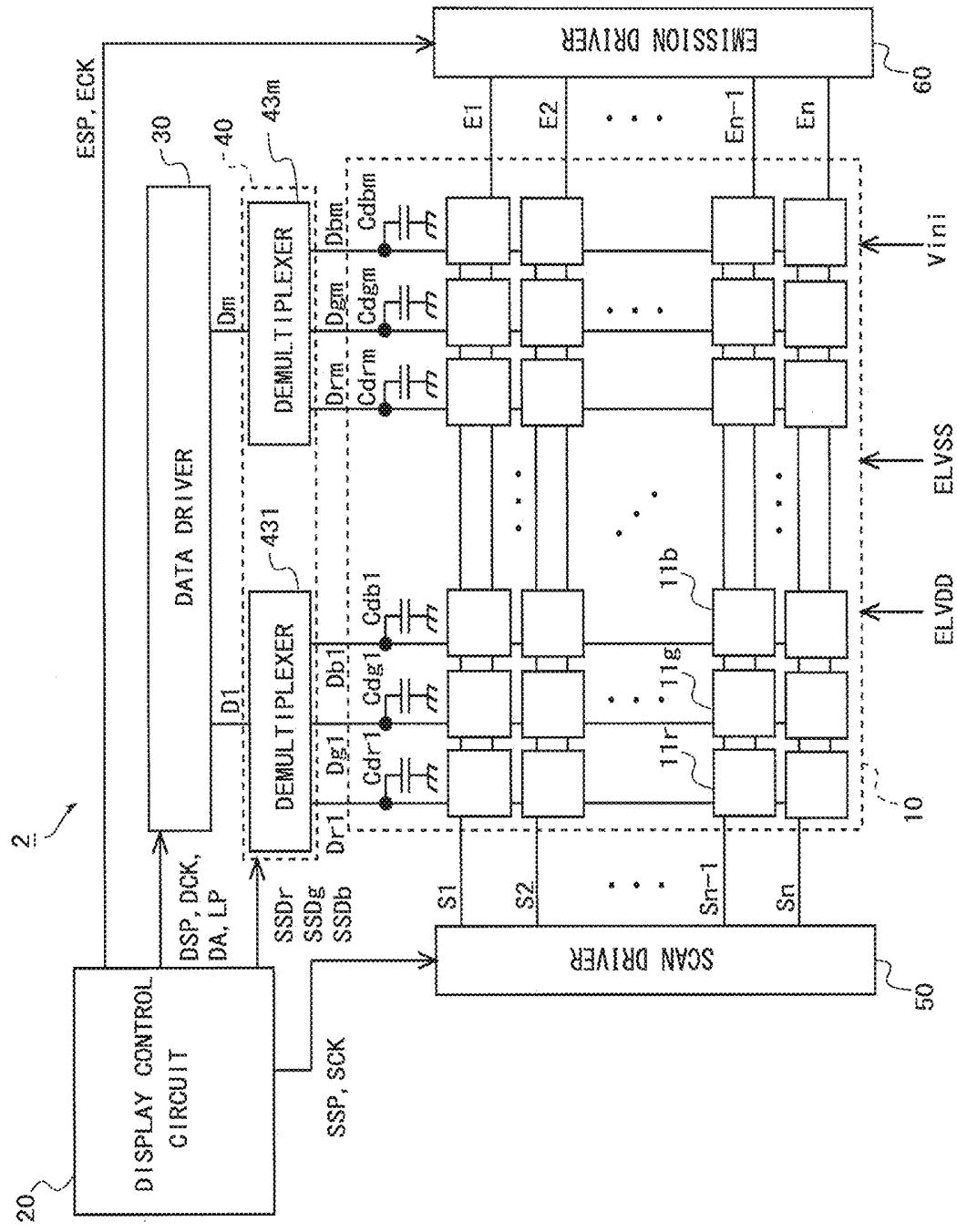
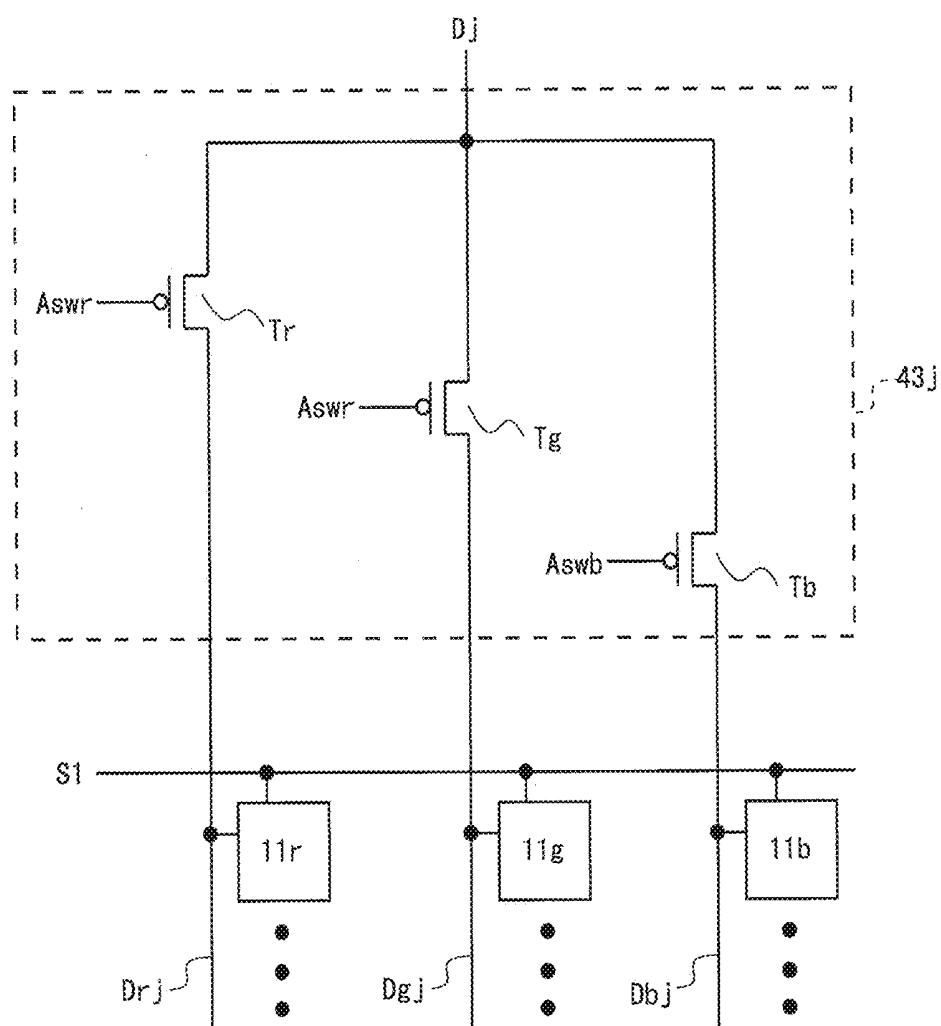
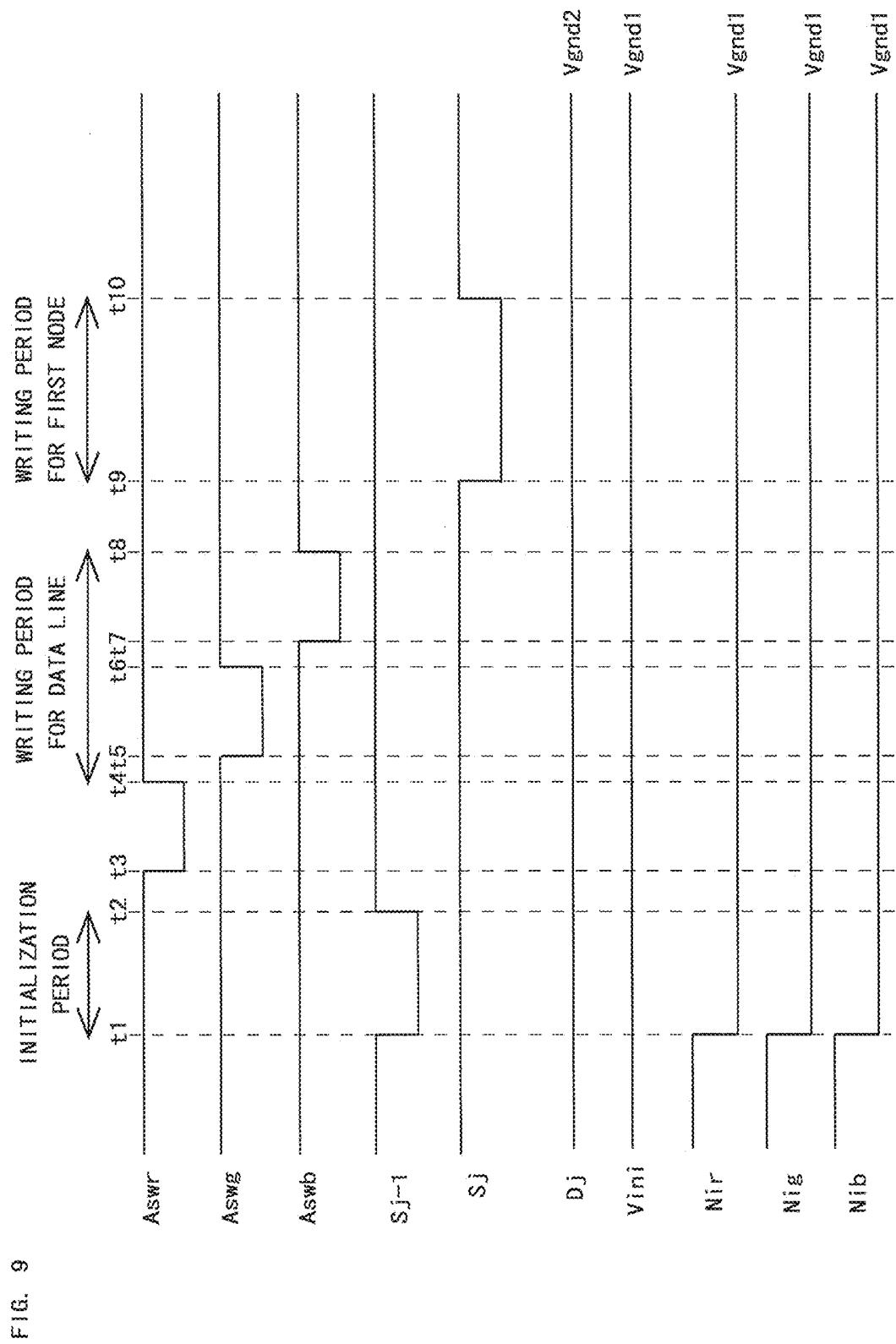




FIG. 8

DISPLAY DEVICE DRIVE METHOD AND DISPLAY DEVICE

TECHNICAL FIELD

[0001] The present invention relates to display device drive methods, more specifically to a display device, such as an organic EL display device, which includes electro-optical elements driven by current, and a method for driving the same.

BACKGROUND ART

[0002] In recent years, organic EL (electroluminescent) display devices have been drawing attention and actively developed as thin display devices that achieve high image quality and low power consumption. In such an organic EL display device, pixel circuits, including organic EL elements, which are self-illuminating display elements driven by current, drive transistors, etc., are disposed in a matrix.

[0003] In Patent Document 1, a logic power supply voltage continues to be outputted for a power-off delay period in an OFF sequence initiated at the time when an organic EL display device is powered off, whereby a panel driver circuit, which is driven by the logic power supply voltage, is used to supply each pixel with preset black display data. Thus, it is possible to release electric charge remaining in the pixel, thereby erasing an afterimage appearing at the time of power off or an afterimage appearing on a display panel rebooted by turning power back on after power off.

CITATION LIST

Patent Document

[0004] Patent Document 1: Japanese Laid-Open Patent Publication No. 2014-71450

SUMMARY OF THE INVENTION

Problems to be Solved by the Invention

[0005] However, the pixel circuit of the organic EL display device described in Patent Document 1 does not include a data compensation circuit as provided in organic EL display devices to be described later in embodiments of the present invention in order to compensate for threshold voltage variations of drive transistors by means of diode connection. Accordingly, even when a drive method described in Patent Document 1 is applied to a pixel circuit with a diode-connected data compensation circuit, some electric charge remains in the pixel circuit at the time of power off, resulting in deterioration of transistors included in the pixel circuit or an afterimage appearing when another image is displayed on a display panel by turning the power back on after the power off.

[0006] Therefore, an objective of the present invention is to provide a display device drive method and a display device, both of which allow pixel circuits to be discharged without leaving electric charge in an OFF sequence performed for power off.

Solution to the Problems

[0007] A first aspect of the present invention is directed to a method for driving an active-matrix display device for

displaying an image by causing electro-optical elements to emit light, the display device including:

- [0008] a plurality of data lines to be supplied with data signals for displaying the image;
- [0009] a plurality of scanning lines disposed so as to cross the data lines;
- [0010] a plurality of pixel circuits provided at intersections of the data lines and the scanning lines;
- [0011] a data line driver circuit configured to supply the data signals respectively to the data lines; and
- [0012] a scanning line driver circuit configured to sequentially select and thereby activate the scanning lines at times when the data signals are supplied to the data lines corresponding to the scanning lines,
- [0013] the pixel circuit includes:
 - [0014] the electro-optical element;
 - [0015] a drive transistor configured to control a current flowing in the electro-optical element and having a control terminal and a first conductive terminal electrically connected when the scanning line corresponding to the pixel circuit is activated;
 - [0016] a first node connected to the control terminal;
 - [0017] a second node connected to a second conductive terminal of the drive transistor;
 - [0018] a data compensation circuit configured to compensate for changes of a threshold voltage of the drive transistor and hold a voltage between the control terminal and the first conductive terminal; and
 - [0019] an initialization circuit configured to initialize a potential on the first node, and
- [0020] an OFF sequence involved in powering off the display device includes:
 - [0021] an initialization step for writing a first ground potential to the first node at some point during a period after the power off, in which a black display potential corresponding to black display data is supplied to the data lines, the first ground potential initializing the potential on the first node; and
 - [0022] a writing step for, when the corresponding scanning line is activated, writing a second ground potential to the second node through the data line so as not to electrically connect the control terminal and the first conductive terminal.
- [0023] According to a second aspect of the present invention, in the first aspect of the present invention,
- [0024] transistors included in the pixel circuit are P-channel transistors, and
- [0025] the second ground potential is less than or equal to a potential obtained by adding the threshold voltage of the drive transistor to the first ground potential.
- [0026] According to a third aspect of the present invention, in the first aspect of the present invention,
- [0027] transistors included in the pixel circuit are N-channel transistors, and
- [0028] the second ground potential is greater than or equal to a potential obtained by subtracting the threshold voltage of the drive transistor from the first ground potential.
- [0029] According to a fourth aspect of the present invention, in the first aspect of the present invention,
- [0030] the initialization circuit includes an initialization line for supplying the first ground potential and an initialization transistor configured to electrically connect the initialization line and the first node, and

[0031] the initialization step includes:

- [0032] supplying the first ground potential to the initialization line after the power off;
- [0033] rendering the initialization transistor conductive in accordance with an active preceding scanning signal outputted by the scanning line driver circuit; and
- [0034] writing the first ground potential from the initialization line to the first node via the initialization transistor.

[0035] According to a fifth aspect of the present invention, in the first aspect of the present invention,

[0036] the display device further includes a power supply configured to supply a power supply voltage to the electro-optical element, and

[0037] in the initialization step, the first ground potential is written to the first node at a time when the power supply voltage is stopped from being supplied to the electro-optical element.

[0038] According to a sixth aspect of the present invention, in the first aspect of the present invention,

[0039] the display device further includes a writing transistor configured to electrically connect the data line and the second node, and

[0040] the writing step includes:

- [0041] supplying the second ground potential to the data line;
- [0042] rendering the writing transistor conductive in accordance with a current scanning signal activating the corresponding scanning line; and
- [0043] writing the second ground potential supplied to the data line to the second node.

[0044] According to a seventh aspect of the present invention, in the sixth aspect of the present invention,

[0045] the data compensation circuit includes:

[0046] a compensation transistor configured to electrically connect the first conductive terminal and the control terminal of the drive transistor in accordance with a scanning signal provided by the scanning line driver circuit; and

[0047] a capacitive element configured to hold a voltage between the first conductive terminal and the control terminal,

[0048] the pixel circuit includes a third node connected to the first conductive terminal of the drive transistor, and

[0049] the writing step further includes:

[0050] rendering the compensation transistor conductive in accordance with the current scanning signal; and

[0051] writing the second ground potential written to the first node to the third node via the conductive compensation transistor.

[0052] According to an eighth aspect of the present invention, in the first aspect of the present invention,

[0053] the display device further includes a plurality of select/output circuits configured to select color data signals from among a plurality of color data signals for displaying color images and supply the selected color data signals respectively to the data lines, the plurality of color data signals being included in data signals that are supplied from the data line driver circuit and correspond to a plurality of primary colors,

[0054] the pixel circuits include a plurality of subpixel circuits configured to cause the electro-optical elements to emit light in accordance with the color data signals,

[0055] the initialization step includes simultaneously writing the first ground potential supplied through the initialization line to the first nodes of the subpixel circuits,

[0056] the writing step includes:

[0057] writing the second ground potential sequentially to the data lines, the second ground potential corresponding to each of the primary colors selected by the select/output circuits; and

[0058] rendering the writing transistor conductive in accordance with a current scanning signal outputted by the scanning line driver circuit, thereby writing the second ground potential simultaneously to the second nodes of the subpixel circuits through the data lines.

[0059] A ninth aspect of the present invention is directed to an active-matrix display device for displaying an image by causing electro-optical elements to emit light, the display device including:

[0060] a plurality of data lines to be supplied with data signals for displaying the image;

[0061] a plurality of scanning lines disposed so as to cross the data lines;

[0062] a plurality of pixel circuits provided at intersections of the data lines and the scanning lines;

[0063] a data line driver circuit configured to supply the data signals respectively to the data lines; and

[0064] a scanning line driver circuit configured to sequentially select and thereby activate the scanning lines at times when the data signals are supplied to the data lines corresponding to the scanning lines,

[0065] the pixel circuit includes:

[0066] the electro-optical element;

[0067] a drive transistor configured to control a current flowing in the electro-optical element and having a control terminal and a first conductive terminal electrically connected when the scanning line corresponding to the pixel circuit is active;

[0068] a first node connected to the control terminal;

[0069] a second node connected to a second conductive terminal of the drive transistor;

[0070] a data compensation circuit configured to compensate for changes of a threshold voltage of the drive transistor and hold a voltage between the control terminal and the first conductive terminal; and

[0071] an initialization circuit configured to initialize a potential on the first node,

[0072] when the display device is powered off, the initialization circuit writes a first ground potential to the first node at some point during a period in which a black display potential corresponding to black display data is supplied to the data lines, the first ground potential initializing the potential on the first node, and

[0073] when the corresponding scanning line is activated, the data compensation circuit writes a second ground potential to the second node through the data line so as not to electrically connect the control terminal and the first conductive terminal.

Effect of the Invention

[0074] In the first aspect, during an OFF sequence period in which the display device is powered off, the first node is set to the first ground potential. As a result, even when the second ground potential is supplied from the data line to the second conductive terminal of the drive transistor, the gate terminal of the drive transistor is not charged with a gate-

to-source voltage. Accordingly, the display device is powered off with the gate terminal of the drive transistor being charged with the first ground potential. Therefore, since any electric charge in the pixel circuit is released and no electric charge remains in the pixel circuit at the end of the OFF sequence period, transistors included in the pixel circuit are kept from deteriorating, and no afterimage appears when another image is displayed by turning the power back on after the power off.

[0075] In the second aspect, since the transistors included in the pixel circuit are P-channel transistors and the second ground potential is less than or equal to a potential obtained by adding the threshold voltage of the drive transistor to the first ground potential, even when the second ground potential is supplied from the data line to the second conductive terminal of the drive transistor, the gate terminal of the drive transistor is not charged with the gate-to-source voltage. Thus, effects similar to those achieved by the first aspect can be achieved.

[0076] In the third aspect, since the transistors included in the pixel circuit are N-channel transistors and the second ground potential is greater than or equal to a potential obtained by subtracting the threshold voltage of the drive transistor from the first ground potential, even when the second ground potential is supplied from the data line to the second conductive terminal of the drive transistor, the gate terminal of the drive transistor is not charged with the gate-to-source voltage. Thus, effects similar to those achieved by the first aspect can be achieved.

[0077] In the fourth aspect, the potential with which to charge the initialization line is changed from the initialization potential to the first ground potential, and the first ground potential is written to the first node. Thus, the potential on the first node can be readily changed to the first ground potential, with the result that no electric charge remains in the pixel circuit after the OFF sequence period.

[0078] In the fifth aspect, the first ground potential is written to the first node at the time when the power supply voltage is stopped from being supplied to the electro-optical element, and therefore, the first node can be efficiently initialized.

[0079] In the sixth aspect, the drive transistor is in OFF state because of the first ground potential written to the first node. In this case, by rendering the writing transistor in ON state, the second ground potential is written from the data line to the second node connected to the second conductive terminal of the drive transistor and the second conductive terminal of the writing transistor. Thus, the drive transistor can more reliably be maintained in OFF state, with the result that no electric charge remains in the pixel circuit after the OFF sequence period.

[0080] In the seventh aspect, the drive transistor is in OFF state because of the first ground potential written to the first node. Accordingly, by rendering the compensation transistor in ON state, the first ground potential written to the first node is also written to the third node connected to the first conductive terminal of the drive transistor and the first conductive terminal of the compensation transistor. Thus, the drive transistor can more reliably be maintained in OFF state, with the result that no electric charge remains in the pixel circuit after the OFF sequence period.

[0081] In the eighth aspect, the display device includes the select/output circuits that select color data signals from among a plurality of color data signals for displaying color

images and supply the selected color data signals respectively to the data lines, the plurality of color data signals being included in data signals that correspond to a plurality of primary colors; during the OFF sequence period in which the display device is powered off, initially, first nodes of all subpixel circuits are simultaneously set to the first ground potential. Next, the second ground potential is supplied from the data line sequentially to the second conductive terminals of the drive transistors for respective subpixel circuits. In this case, as in the first aspect, the gate terminals of the drive transistors are not charged with the gate-to-source voltage, and therefore, the display device is powered off with the gate terminals of the drive transistors being charged with the first ground potential. Thus, any electric charge in each subpixel circuit is released and no electric charge remains in the subpixel circuit at the end of the OFF sequence period, whereby the transistors included in the subpixel circuit are kept from deteriorating, and no afterimage appears when another image is displayed by turning the power back on after the power off.

[0082] The ninth aspect renders it possible to achieve effects similar to those achieved by the first aspect.

BRIEF DESCRIPTION OF THE DRAWINGS

[0083] FIG. 1 is a circuit diagram illustrating the configuration of a pixel circuit including a diode-connected data compensation circuit.

[0084] FIG. 2 is a timing chart describing a method for driving the pixel circuit shown in FIG. 1 during an OFF sequence period in a basic study.

[0085] FIG. 3 is a block diagram illustrating the general configuration of an organic EL display device according to a first embodiment.

[0086] FIG. 4 is a timing chart describing a method for driving a pixel circuit of the organic EL display device according to the embodiment shown in FIG. 3 during an OFF sequence period.

[0087] FIG. 5 is a timing chart describing the operation of the organic EL display device shown in FIG. 3 during the OFF sequence period.

[0088] FIG. 6 is a timing chart describing a method for driving a pixel circuit of an organic EL display device according to a variant of the first embodiment during an OFF sequence period.

[0089] FIG. 7 is a block diagram illustrating the general configuration of an organic EL display device according to a second embodiment of the present invention.

[0090] FIG. 8 is a circuit diagram illustrating the configuration of a demultiplexer included in a demultiplexing part of the organic EL display device shown in FIG. 7.

[0091] FIG. 9 is a timing chart describing a method for driving subpixel circuits of the organic EL display device shown in FIG. 7 during an OFF sequence period.

MODES FOR CARRYING OUT THE INVENTION

1. Basic Study

[0092] Before describing an organic EL display device according to the present embodiment, an organic EL display device in which data compensation circuits in pixel circuits are diode-connected circuits will be described with respect to the principle of transistor deterioration and afterimage

appearance due to electric charge remaining in the pixel circuits in the course of an OFF sequence. Note that unless otherwise specified, transistors will be described herein as being of P-channel type, but the transistors are not limited to P-channel type and may be of N-channel type. Moreover, in the present embodiment, the transistors are, but are not limited to, for example, thin-film transistors (TFTs). The P-channel transistor is rendered in ON state when a low-level potential is supplied at a gate terminal, and in OFF state when a high-level potential is supplied.

1.1 Configuration of the Pixel Circuit

[0093] FIG. 1 is a circuit diagram illustrating the configuration of a pixel circuit 11 including a diode-connected data compensation circuit 42. Referring to FIG. 1, the pixel circuit 11 includes one organic EL element OLED (also referred to as an “electro-optical element”), six transistors T1 to T6, and one capacitor C. More specifically, included in the pixel circuit 11 are an organic EL element OLED, a drive transistor T1, a writing transistor T2, a compensation transistor T3, an initialization transistor T4, a power supply transistor T5, an emission control transistor T6, and a capacitor C serving as a capacitive element.

[0094] The drive transistor T1 has a gate terminal (also referred to as a “control terminal”), a first conductive terminal, and a second conductive terminal; the first conductive terminal is connected to a third node N3, and the second conductive terminal is connected to a second node N2. In the case of the drive transistor T1, the first conductive terminal and the second conductive terminal respectively serve as a drain terminal and a source terminal, or vice versa, depending on carrier flow. For example, a data voltage supplied from a data line D_j is provided through the writing transistor T2, the drive transistor T1, and the compensation transistor T3 to the gate terminal of the drive transistor T1. In this case, the first conductive terminal of the drive transistor T1 serves as a drain terminal, and the second conductive terminal serves as a source terminal.

[0095] The pixel circuit 11 is connected to a scanning line S_j (also referred to as a “current scanning line”), a scanning line S_{j-1} (also referred to as a “preceding scanning line”) immediately preceding the current scanning line S_j, an emission line E_j, the data line D_j, a high-level power line ELVDD, a low-level power line ELVSS, and an initialization line V_{ini}. Note that the high-level power line ELVDD is a power line for supplying a high-level potential ELVDD, the low-level power line ELVSS is a power line for supplying a low-level potential ELVSS, and the initialization line V_{ini} is a power line for supplying an initialization potential V_{ini}.

[0096] In the pixel circuit 11, the writing transistor T2 has a gate terminal connected to the current scanning line S_j, a first conductive terminal connected to the data line D_j as a source terminal, and a second conductive terminal connected to the second node N2 as a drain terminal. The writing transistor T2 writes a data voltage with which the data line D_j is being charged, to the pixel circuit 11 in response to the current scanning line S_j being selected.

[0097] The source terminal, which is the second conductive terminal of the drive transistor T1, is connected by the second node N2 to the drain terminal, which is the second conductive terminal of the writing transistor T2. The drive transistor T1 supplies the organic EL element OLED with a

drive current I in accordance with a gate-to-source voltage V_{gs} via the emission control transistor T6 to be described later.

[0098] The compensation transistor T3 is provided between the gate terminal and the first conductive terminal of the drive transistor T1, and has a first conductive terminal connected by the third node N3 to the first conductive terminal of the drive transistor T1. In the pixel circuit 11, the compensation transistor T3 has a gate terminal connected to the current scanning line S_j. When the compensation transistor T3 is rendered in ON state in response to the current scanning line S_j being selected, the compensation transistor T3 diode-connects the drive transistor T1 by connecting the gate terminal and the first conductive terminal of the drive transistor T1.

[0099] The initialization transistor T4 is provided between the gate terminal of the drive transistor T1 and the initialization line V_{ini} and has a gate terminal connected to the preceding scanning line S_{j-1}. When the initialization transistor T4 is rendered in ON state in response to the preceding scanning line S_{j-1} being selected, a potential on a first node N1, which connects a drain terminal of the initialization transistor T4 and the gate terminal of the drive transistor T1, is set to the initialization potential V_{ini}. As a result, the initialization potential V_{ini} is supplied to the gate terminal of the drive transistor T1.

[0100] The power supply transistor T5 is provided between the high-level power line ELVDD and the first conductive terminal of the drive transistor T1, and has a gate terminal connected to the emission line E_j. When the power supply transistor T5 is rendered in ON state in response to the emission line E_j being selected, the drive transistor T1 is supplied with the high-level potential ELVDD at the second conductive terminal.

[0101] The emission control transistor T6 is provided between the drive transistor T1 and the organic EL element OLED, and has a gate terminal connected to the emission line E_j. When the emission control transistor T6 is rendered in ON state in response to the emission line E_j being selected, the emission control transistor T6 supplies the drive current I to the organic EL element OLED.

[0102] The capacitor C has a first terminal connected to the gate terminal of the drive transistor T1 and a second terminal connected to the high-level power line ELVDD. The capacitor C holds a gate voltage V_g of the drive transistor T1 when the current scanning line S_j connected to the pixel circuit 11, including the capacitor C, is deselected, whereby the compensation transistor T3 is rendered in OFF state.

[0103] The organic EL element OLED has an anode (a terminal of the organic EL element OLED) connected to a second conductive terminal of the emission control transistor T6 and a cathode (the other terminal of the organic EL element OLED) connected to the low-level power line ELVSS. The organic EL element OLED emits light with a luminance in accordance with the drive current I supplied by the drive transistor T1.

1.2 Method for Driving the Pixel Circuit

[0104] FIG. 2 is a timing chart describing a method for driving the pixel circuit 11 shown in FIG. 1 during an OFF sequence period. As shown in FIG. 2, the OFF sequence period is divided into: an initialization period during which the initialization potential V_{ini} is provided to the first node

N1 connected to the gate terminal of the drive transistor T1, thereby initializing the first node N1; and a writing period following the initialization of the first node N1, during which a ground potential V_{gnd} is written to the first node N1, the second node N2, and the third node N3 through the data line D_j . Note that the OFF sequence period refers to a processing period from reception of a power-off command from a power switch, an external operating means, or the like, until transition to a power-off state, which occurs after each unit in the display device is set in a predetermined state.

[0105] First, the initialization period will be described. At time t_1 , the preceding scanning line S_{j-1} experiences a change in potential from high level to low level. As a result, a low-level voltage is supplied to the gate terminal of the initialization transistor T4, whereby the initialization transistor T4 is rendered in ON state. Accordingly, the initialization potential V_{ini} , which is lower than the ground potential V_{gnd} , is supplied to the first node N1 from the initialization line V_{ini} through the initialization transistor T4, whereby the first node N1 is charged with the initialization potential V_{ini} . At time t_2 , the preceding scanning line S_{j-1} experiences a change in potential from low level to high level, whereby the initialization transistor T4 is rendered in OFF state. In this manner, an initialization circuit 41, including the initialization transistor 14, is operated during the initialization period. In this case, since the potential on the current scanning line S_j is high-level, the data compensation circuit 42, including the compensation transistor T3 and the capacitor C, is not operated, and the data line D_j is set at the ground potential V_{gnd} .

[0106] Next, the writing period will be described. At time t_3 , the current scanning line S_j experiences a change in potential from high level to low level. As a result, the writing transistor T2 and the compensation transistor T3 are rendered in ON state. Moreover, the data line D_j is set at the ground potential V_{gnd} . Accordingly, the ground potential V_{gnd} on the data line D_j is written to the first node N1 via the writing transistor T2, the drive transistor T1, and the compensation transistor T3. In this case, the gate-to-source voltage V_{gs} on the drive transistor T1 is lower than the ground potential V_{gnd} on the source terminal by a threshold voltage V_{th} of the drive transistor T1. Accordingly, the potential on the first node N1 connected to the gate terminal of the drive transistor T1 does not rise from the initialization potential V_{ini} to as high as the ground potential V_{gnd} , but only to a potential lower than the ground potential V_{gnd} by the threshold voltage V_{th} .

[0107] As a result, electric charge held in the capacitor C is not completely released, so that the organic EL display device is powered off, leaving some electric charge unreleased. In this case, the ground potential V_{gnd} provided through the data line D_j is written to the second node N2, which connects the second conductive terminal of the drive transistor T1 and the second conductive terminal of the writing transistor T2, and also written to the third node N3, which connects the first conductive terminal of the drive transistor T1 and the first conductive terminal of the compensation transistor T3. Accordingly, when the organic EL display device is powered off, the electric charge remaining in the capacitor C is left unreleased and might cause deterioration of the drive transistor T1 and/or an afterimage appearing on a display part 10 when the power is turned back on.

[0108] In this manner, the potential on the first node N1 connected to the gate terminal of the drive transistor T1 is initialized to the initialization potential V_{ini} by the initialization circuit 41 during the initialization period. Thereafter, the data compensation circuit 42 performs potential compensation, and therefore, even when an attempt is made to write the ground potential V_{gnd} with which the data line D_j is being charged, to the first node N1 in order to set the potential on the first node N1 to the ground potential V_{gnd} , the potential on the first node N1 only rises to a value lower than the ground potential V_{gnd} by the threshold voltage V_{th} . Therefore, there is a problem in that the capacitor C holds an electric charge corresponding to the threshold voltage V_{th} , and the charge is left unreleased even after the OFF sequence period.

[0109] Therefore, embodiments will be described below with reference to drive methods which keep any electric charge from remaining in the first node N1 after the OFF sequence period.

2. First Embodiment

[0110] Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings.

2.1 General Configuration

[0111] FIG. 3 is a block diagram illustrating the general configuration of an organic EL display device 1 according to the first embodiment of the present invention. The organic EL display device 1 according to the present embodiment is generally a display device capable of color display in the three primary colors, R, G, and B, but in the present embodiment, for the sake of simplicity, the organic EL display device 1 is assumed to be a display device for displaying any one of the colors. Accordingly, the organic EL display device 1 includes no demultiplexers.

[0112] The organic EL display device 1 is an active-matrix display device including a display part 10, a display control circuit 20, a data driver 30, a scan driver 50, and an emission driver 60, as shown in FIG. 3. Since the organic EL display device 1 includes no demultiplexers, the data driver 30 supplies a data signal to each data line D_j . Note that in the present embodiment, the data driver 30 realizes a data line driver circuit, the scan driver 50 realizes a scanning line driver circuit, and the emission driver 60 realizes a control line driver circuit. Moreover, the scan driver 50 and the emission driver 60 may be integrally formed with or separately formed from, for example, the display part 10.

[0113] The display part 10 has provided therein m (where m is an integer of 2 or more) data lines D_1 to D_m and n scanning lines S_1 to S_n crossing the data lines. The display part 10 has also provided therein (m×n) pixel circuits 11 corresponding to intersections of the data lines D_1 to D_m and the scanning lines S_1 to S_n . The display part 10 has n emission lines E_1 to E_n provided parallel to the n scanning lines S_1 to S_n and serving as control lines. The m data lines D_1 to D_m are connected to the data driver 30, and the n scanning lines S_1 to S_n are connected to the scan driver 50. The n emission lines E_1 to E_n are connected to the emission driver 60.

[0114] The display part 10 has power lines provided in common to the pixel circuits 11. More specifically, provided is a power line for supplying a high-level potential ELVDD

for driving organic EL elements to be described later, and also a power line for supplying a low-level potential ELVSS for driving the organic EL elements. There is also provided an initialization line $V_{i_{ini}}$ for supplying an initialization potential V_{ini} for an initialization operation to be described later. These potentials are respectively supplied by a first power supply **15** and a second power supply **16**. In the present embodiment, the high-level power line ELVDD supplies the high-level potential ELVDD, and the low-level power line ELVSS supplies the low-level potential ELVSS.

[0115] Furthermore, there are m data capacitors C_{d1} to C_{dm} respectively connected at one terminal to the m data lines D_1 to D_m and grounded at the other terminal (not connected to the data lines D_j) so as to hold the data signals provided to the data lines D_j .

[0116] The display control circuit **20** outputs various control signals to the data driver **30**, the scan driver **50**, and the emission driver **60**. More specifically, the display control circuit **20** outputs a data start pulse DSP, a data clock DCK, display data DA, and a latch pulse LP to the data driver **30**. Moreover, the display control circuit **20** outputs a gate start pulse SSP and a gate clock SCK to the scan driver **50** and an emission start pulse EMSP and an emission clock EMCK to the emission driver **60**.

[0117] The data driver **30** includes unillustrated elements such as an m -bit shift register, a sampling circuit, a latch circuit, and m D/A converters. The shift register has m bistable circuits cascaded to each other, and transfers the data start pulse DSP supplied to the first stage sequentially to subsequent stages in synchronization with the data clock DCK, with the result that sampling pulses are outputted from the stages. Concurrently with the outputting of each sampling pulse, the sampling circuit is supplied with display data DA. The sampling circuit memorizes the display data DA in accordance with the sampling pulse. Once the sampling circuit memorizes the display data DA for one row, the display control circuit **20** outputs a latch pulse LP to the latch circuit. Upon reception of the latch pulse LP, the latch circuit holds the display data DA memorized in the sampling circuit. The D/A converters are provided corresponding to the m data lines D_1 to D_m respectively connected to m output terminals (not shown) of the data driver **30**, in order to supply the data lines D_1 to D_m with data signals, which are analog signals converted from the display data DA held in the latch circuit by the D/A converters.

[0118] The scan driver **50** drives the n scanning lines S_1 to S_n . More specifically, the scan driver **50** includes unillustrated elements such as a shift register and a buffer. The shift register sequentially transfers gate start pulses SSP in synchronization with a gate clock SCK. Scanning signals, which are outputs from stages of the shift register, are sequentially supplied to corresponding current scanning lines S_j (where $j=1$ to n) via the buffer. The m pixel circuits **11** connected to the current scanning line S_j are collectively selected by an active scanning signal (in the present embodiment, a “low-level scanning signal”). Note that the scanning signal supplied to the current scanning line S_j will also be referred to as the current scanning signal, and the scanning signal supplied to the preceding scanning line S_{j-1} will also be referred to as the preceding scanning signal.

[0119] The emission driver **60** drives the n emission lines E_1 to E_n . More specifically, the emission driver **60** includes unillustrated elements such as a shift register and a buffer. The shift register sequentially transfers emission start pulses

EMSP in synchronization with an emission clock EMCK. Emission signals, which are outputs from stages of the shift register, are supplied to corresponding emission lines E_j via the buffer.

2.2 Method for Driving the Pixel Circuit

[0120] The configuration of the pixel circuit **11** in the organic EL display device **1** according to the present embodiment is the same as the configuration of the pixel circuit **11** described in the basic study and shown in FIG. 1, and therefore, any description thereof will be omitted.

[0121] FIG. 4 is a timing chart describing a method for driving the pixel circuit **11** of the organic EL display device **1** according to the present embodiment during an OFF sequence period. The OFF sequence period shown in FIG. 4 consists of an initialization period and a writing period provided following the initialization period, as in the timing chart shown in FIG. 2. Note that in the following description, the ground potential V_{gnd} with which the initialization line $V_{i_{ini}}$ is charged will also be referred to as the first ground potential V_{gnd1} , and the ground potential V_{gnd} with which the data line D_j is charged will also be referred to as the second ground potential V_{gnd2} .

[0122] First, the initialization period will be described. At time t_1 , the preceding scanning line S_{j-1} experiences a change in potential from the ground potential V_{gnd} to low level. As a result, the gate terminal of the initialization transistor T4 is supplied with a low-level voltage, whereby the initialization transistor T4 is rendered in ON state. Moreover, at a time (not shown) when the organic EL display device is provided with a power-off command, the initialization line $V_{i_{ini}}$ experiences a change in potential from low level to the first ground potential V_{gnd1} , i.e., high level. As a result, unlike in the basic study, the first ground potential V_{gnd1} , which is a potential higher than the initialization potential V_{ini} , is supplied from the initialization line $V_{i_{ini}}$ to the first node N1 via the initialization transistor T4 in ON state.

[0123] At time t_2 , the preceding scanning line S_{j-1} experiences a change in potential from low level to high level. Note that since the potential on the current scanning line S_j is high-level, as in the basic study, the data compensation circuit **42** is not operated, and the data line D_j is set at the second ground potential V_{gnd2} .

[0124] Next, the writing period will be described. At time t_3 , the current scanning line S_j experiences a change in potential from high level to low level. Moreover, the data line D_j is set at the second ground potential V_{gnd2} . Accordingly, the writing transistor T2 is rendered in ON state, and the second ground potential V_{gnd2} is written from the data line D_j to the second node N2 connected to both the source terminal, which is the second conductive terminal of the drive transistor T1, and the drain terminal, which is the second conductive terminal of the writing transistor T2. On the other hand, the first node N1 connected to the gate terminal of the drive transistor T1 is set at the first ground potential V_{gnd1} . Therefore, to keep the threshold voltage V_{th} from being compensated for by the data compensation circuit **42**, the following formula (1) needs to be established.

$$V_{gnd1} + V_{th} \geq V_{gnd2} \quad (1)$$

[0125] In the case where formula (1) is established, the first node N1 is not set to the gate-to-source voltage V_{gs} represented by equation (2) below and remains at the first

ground potential V_{gnd1} , whereby the drive transistor T1 remains in OFF state. Accordingly, the data compensation circuit 42 does not compensate for threshold voltage, and the first node N1 remains at the first ground potential V_{gnd1} .

$$V_{gs} = V_{gnd2} - V_{th} \quad (2)$$

[0126] Furthermore, at time t3, since the current scanning line S_j is set to low level, the compensation transistor T3 has a low-level voltage at the gate terminal. Accordingly, the compensation transistor T3 is rendered in ON state. As a result, through the compensation transistor T3, the first ground potential V_{gnd1} with which the first node N1 has been charged during the initialization period is supplied to the third node N3, which is a connecting point between the first conductive terminal of the drive transistor T1 and the first conductive terminal of the compensation transistor T3, with the result that the third node N3 is set to the first ground potential V_{gnd1} as well. In this manner, the first node N1 and the third node N3 in the pixel circuit 11 are set at the first ground potential V_{gnd1} , and the second node N2 is set at the second ground potential V_{gnd2} , whereby the organic EL display device 1 will not be powered off with any electric charge remaining in the pixel circuit 11. Thus, no electric charge remains in the pixel circuit, whereby the transistors included in the pixel circuit 11 are kept from deteriorating and no afterimage appears when the display part 10 displays another image by turning power back on after power off.

[0127] FIG. 5 is a timing chart describing the operation of the organic EL display device 1 during the OFF sequence period. The operation of the organic EL display device 1 during the OFF sequence period will be described with reference to FIG. 5. At time t0, the organic EL display device 1 is powered off, and the OFF sequence period starts. As has already been described, the OFF sequence period is divided into the initialization period from time t0 to time t3 and the writing period from time t3 to time t5.

[0128] Once the organic EL display device 1 is powered off and the OFF sequence period starts at time t0, the potential of an image signal is switched to a black display potential. As a result, the black display potential is applied to charge the first node N1 through the data line D_j , the writing transistor T2, the drive transistor T1, and the compensation transistor T3, whereby the first node N1 is set at the black display potential as well. During the initialization period from time t0 to time t3 and the writing period from time t3 to time t5, a high-level power line of the organic EL display device 1 maintains a high-level potential ELVDD, and a low-level power line ELVSS maintains a low-level potential ELVSS.

[0129] During the period from time t1 to time t2, the high-level power line ELVDD, which supplies a power supply potential to the organic EL element OLED of each pixel circuit 11, experiences a change in potential from the high-level potential ELVDD to the ground potential V_{gnd} or floating state, and the low-level power line ELVSS experiences a change in potential from the low-level potential ELVSS to the ground potential V_{gnd} or floating state. Concurrently with this, the initialization potential V_{ini} on the initialization line V_{ini} is changed from low level to the first ground potential V_{gnd1} .

[0130] During the period from time t2 to time t3, the data driver 30 provides the data line D_j with a black display potential, which corresponds to a black display data signal for causing the display part 10 to display an entirely black

screen, with the result that the data line D_j is charged with the black display potential, which is written to the first node N1 via the writing transistor T2, the drive transistor T1, and the compensation transistor T3. Moreover, at time t2, the initialization potential V_{ini} is set to the first ground potential V_{gnd1} . At time t3, the potential of the black display data signal changes to the second ground potential V_{gnd2} , thereby keeping the gate-to-source voltage V_{gs} from being written to the gate terminal of the drive transistor T1, with the result that the gate terminal remains at the first ground potential V_{gnd1} , and the drive transistor T1 is rendered in OFF state. In this manner, the drive transistor T1 is rendered in OFF state by changing the initialization potential V_{ini} from low level to the first ground potential V_{gnd1} , i.e., high level, at the time when the high-level potential ELVDD and the low-level potential ELVSS are changed to the ground potential V_{gnd} or floating state. In the foregoing, the initialization potential V_{ini} on the initialization line V_{ini} is changed from low level to the first ground potential V_{gnd1} during the period from time t1 to time t2, but this is not limiting, and such a change may occur during any period, for example, the period from time t0 to time t1 or from time t2 to time t3, so long as the image signal is set at the black display potential during that period.

[0131] It should be noted that the gate start pulse SSP and the gate clock SCK intended for driving the scan driver 50 and the emission start pulse EMSP and the emission clock EMCK intended for driving the emission driver 60 continue to be outputted until time t4, and therefore, the data driver 30, the scan driver 50, and the emission driver 60 are operated until time t4.

[0132] Next, the operation of the organic EL display device 1 during the period from time t5 to time t7 will be described. During the period from time t5 to time t6, each of the high-level potential GVDD from the high-level power supply of the organic EL display device 1 and the low-level potential GVSS from the low-level power is changed to the ground potential V_{gnd} . Moreover, during the period from time t5 to time t6, each of the gate start pulse SSP, the gate clock SCK, the emission start pulse EMSP, and the emission clock EMCK is changed from high or low level to the ground potential V_{gnd} .

[0133] In the basic study, the initialization potential V_{ini} on the initialization line V_{ini} is changed from low level to the first ground potential V_{gnd1} during the period from time t5 to time t6. However, in the present embodiment, as has already been described, the initialization potential V_{ini} is changed from low level to high level during the period from time t1 to time t2 within the initialization period. Accordingly, in the present embodiment, the first ground potential V_{gnd1} with which the first node N1 has been charged during the initialization period keeps the drive transistor T1 in OFF state, and therefore, no electric charge remains in the pixel circuit 11.

2.3 Effects

[0134] In the present embodiment, during the OFF sequence period, the first node N1 is set to the first ground potential V_{gnd1} , which is a potential higher than the initialization potential V_{ini} . As a result, even when the second ground potential V_{gnd2} is supplied from the data line D_j to the second conductive terminal of the drive transistor T1, the gate terminal of the drive transistor T1 is not charged with the gate-to-source voltage V_{gs} . Therefore, the organic EL display device 1 is powered off with the gate terminal of the

drive transistor T1 being charged with the first ground potential V_{gnd1} . Thus, no electric charge remains in the pixel circuit 11 after the power off, whereby the transistors included in the pixel circuit 11 are kept from deteriorating and no afterimage appears when the display part 10 displays another image by turning the power back on after the power off.

2.4 Variant

[0135] In the embodiment, all of the six transistors included in the pixel circuit 11 are of P-channel type, but the transistors may be of N-channel type. Accordingly, the present variant will be described with respect to the case where all of the six transistors included in the pixel circuit are of N-channel type. In this case, the general configuration of the organic EL display device is the same as in the embodiment, and the pixel circuit is the same as the pixel circuit 11 shown in FIG. 2, except that all of the six transistors T1 to T6 included therein are of N-channel type. Therefore, any figures illustrating the general configuration of the organic EL display device and the configuration of the pixel circuit 11, along with any descriptions thereof, will be omitted.

[0136] FIG. 6 is a timing chart describing a method for driving the pixel circuit of the organic EL display device according to the present variant during an OFF sequence period. The OFF sequence period shown in FIG. 6 consists of an initialization period and a writing period provided following the initialization period, as in the timing chart shown in FIG. 4.

[0137] First, the initialization period will be described. At time t_1 , the preceding scanning line S_{j-1} experiences a change in potential from low level to high level. As a result, the gate terminal of the initialization transistor T4 is supplied with a high-level voltage, whereby the initialization transistor T4 is rendered in ON state. Moreover, at a time (not shown) when the organic EL display device is provided with a power-off command, the initialization line V_{ini} experiences a change in potential from high level to the first ground potential V_{gnd1} , i.e., low level. As a result, the first ground potential V_{gnd1} from the initialization line V_{ini} is written to the first node N1 via the initialization transistor T4 in ON state. At time t_2 , the preceding scanning line S_{j-1} experiences a change in potential from high level to low level. In this manner, during the initialization period, the initialization circuit 41 is operated, thereby charging the first node N1 with the first ground potential V_{gnd1} . Note that since the current scanning line S_j is at low level, the data compensation circuit 42 is not operated, and the data line D_j is set at the second ground potential V_{gnd2} .

[0138] Next, the writing period will be described. At time t_3 , the current scanning line S_j experiences a change in potential from low level to high level. Moreover, the data line D_j is at the second ground potential V_{gnd2} . Accordingly, the writing transistor T2 is rendered in ON state, and the second ground potential V_{gnd2} from the data line D_j is written to the second node N2 connected to the second conductive terminal of the drive transistor T1 and the second conductive terminal of the writing transistor T2.

[0139] On the other hand, the first node N1 connected to the gate terminal of the drive transistor T1 is at the first ground potential V_{gnd1} . Therefore, to keep any changes of the threshold voltage V_{th} from being compensated for by the

data compensation circuit 42, the following formula (3) needs to be established, given the drive transistor T1 is of N-channel type.

$$V_{gnd1} - V_{th} \leq V_{gnd2} \quad (3)$$

[0140] In the case where formula (3) is established, the first node N1 is not set to the gate-to-source voltage V_{gs} represented by formula (4) below and remains at the first ground potential V_{gnd1} , with the result that the drive transistor T1 remains in OFF state. Accordingly, the data compensation circuit 42 does not compensate for any changes of the threshold voltage V_{th} , and the first node N1 remains at the first ground potential V_{gnd1} .

$$V_{gs} = V_{gnd2} + V_{th} \quad (4)$$

[0141] Furthermore, at time t_3 , the current scanning line S_j experiences a change from low level to high level, and therefore, the compensation transistor T3 has also a high-level voltage at the gate terminal. Accordingly, the compensation transistor T3 is rendered in ON state. As a result, the first ground potential V_{gnd1} with which the first node N1 has been charged during the initialization period is supplied to the third node N3, which is a connecting point between the first conductive terminal of the drive transistor T1 and the first conductive terminal of the compensation transistor T3, via the compensation transistor T3, with the result that the third node N3 is set to the first ground potential V_{gnd1} as well. In this manner, each of the first node N1 and the third node N3 in the pixel circuit 11 is set to the first ground potential V_{gnd1} , and the second node N2 is set to the second ground potential V_{gnd2} , whereby the organic EL display device 1 will not be powered off with any electric charge remaining in the pixel circuit 11. Thus, no electric charge remains in the pixel circuit after the organic EL display device is powered off, whereby the transistors included in the pixel circuit 11 are kept from deteriorating, and no afterimage appears when the display part 10 displays another image by turning the power back on after the power off.

3. Second Embodiment

[0142] FIG. 7 is a block diagram illustrating the general configuration of an organic EL display device 2 according to a second embodiment of the present invention. The organic EL display device 2 is an active-matrix display device capable of color display in the three primary colors, R, G, and B. The organic EL display device 2 shown in FIG. 7 is a display device which includes a display part 10, a display control circuit 20, a data driver 30, a demultiplexing part 40, a scan driver 50, and an emission driver 60, and employs an SSD (source shared driving) method in which the data driver 30 supplies data signals to data lines D_{r1} to D_{rm} , D_{g1} to D_{gm} , and D_{b1} to D_{bm} via the demultiplexing part 40.

[0143] The display part 10 has m data lines D_1 to D_m disposed along with n scanning lines S_1 to S_n , and n emission lines E_1 to E_n . The demultiplexing part 40 includes m demultiplexers (also referred to as “select/output circuits”) 43₁ to 43_m, which are respectively connected to the m data lines D_1 to D_m . Note that since the display part 10, the display control circuit 20, the data driver 30, the scan driver 50, and the emission driver 60 are configured in the same manner as in FIG. 3, any descriptions thereof will be omitted, and the demultiplexing part 40 will simply be described below.

3.1 Configuration of the Demultiplexing Part

[0144] FIG. 8 is a circuit diagram illustrating the configuration of a demultiplexer 43_j included in the demultiplexing part **40** shown in FIG. 7. The configuration of the demultiplexer 43_j will be described with reference to FIG. 8. Each demultiplexer 43_j includes three selection transistors T_r , T_g , and T_b . All of the selection transistors T_r , T_g , and T_b will be described as being P-channel transistors, but may be N-channel transistors.

[0145] The selection transistors T_r , T_g , and T_b included in the demultiplexer 43_j respectively select an R data signal R_j , a G data signal G_j , and a B data signal B_j . When a gate terminal of the selection transistor T_r is provided with a selection control signal ASW_r from the display control circuit **20** simultaneously with an R data signal R_j being provided through the data line D_{rj} , the selection transistor T_r is rendered in ON state and supplies the R data signal R_j to the R data line D_{rj} . When a gate terminal of the selection transistor T_g is provided with a selection control signal ASW_g from the display control circuit **20** simultaneously with a G data signal G_j being provided through the data line D_{gj} , the selection transistor T_g supplies the G data signal G_j to the G data line D_{gj} . When a gate terminal of the selection transistor T_b is provided with a selection control signal ASW_b from the display control circuit **20** simultaneously with a B data signal B_j being provided through the data line D_{bj} , the selection transistor T_b supplies the B data signal B_j to the B data line D_{bj} .

[0146] Similarly, for each horizontal period, the other demultiplexers supply R data signals to R data lines, G data signals to G data lines, and B data signals to B data lines. In this manner, by using the demultiplexers 43_1 to 43_m , it is rendered possible to reduce the number of output terminals of the data driver **30**, thereby reducing the cost of producing the data driver **30**. Note that the number of selection transistors included in the demultiplexer 43_j in FIG. 8 is three, but the number is not specifically limited so long as the number falls within the range from two to m .

[0147] The R data line D_j is connected to n R subpixel circuits 11_r , and R data signals sequentially supplied through the R data line D_{rj} are sequentially written to the n R subpixel circuits 11_r . The G data line D_{gj} is connected to n G subpixel circuits 11_g , and G data signals sequentially supplied through the G data line D_{gj} are sequentially written to the n G subpixel circuits 11_g . The B data line D_b is connected to n B subpixel circuits 11_b , and B data signals sequentially supplied through the B data line D_{bj} are sequentially written to the n B subpixel circuits 11_b .

3.2 Drive Method

[0148] FIG. 9 is a timing chart describing a method for driving the subpixel circuits 11_r , 11_g , and 11_b of the organic EL display device **2** in the present embodiment during an OFF sequence period. As shown in FIG. 9, at time $t1$, the preceding scanning line S_{j-1} experiences a change in potential from high level to low level. As a result, the gate terminal of the initialization transistor $T4$ in each of the subpixel circuits 11_r , 11_g , and 11_b is supplied with a low-level voltage, whereby the initialization transistor $T4$ is rendered in ON state. Moreover, at a time (not shown) when the organic EL display device **2** is provided with a power-off command, the initialization line V_{ini} experiences a change in potential from low level to the first ground potential V_{gnd1} . As a result, the

first ground potential V_{gnd1} from the initialization line V_{ini} is applied to charge the first node $N1$ in each of the subpixel circuits 11_r , 11_g , and 11_b via the initialization transistor $T4$ in ON state. At time $t2$, the preceding scanning line S_{j-1} experiences a change in potential from low level to high level. In this case, since the current scanning line S_j is at high level, the compensation transistor $T3$ is in OFF state, and the data line D_j is at the second ground potential V_{gnd2} .

[0149] During the period from time $t3$ to time $t4$, simultaneously with an R data signal R_j being supplied to the data line D_{rj} , a data control signal Asw_r experiences a change in potential from high level to low level, thereby rendering the selection transistor T_r in ON state. As a result, the selection transistor T_r selects and writes the R data signal R_j to the data line D_{rj} . During the period from time $t5$ to time $t6$, simultaneously with a G data signal G_j being supplied to the data line D_{gj} , a data control signal Asw_g experiences a change in potential from high level to low level, thereby rendering the selection transistor T_g in ON state. As a result, the selection transistor T_g selects and writes the G data signal G_j to the data line D_{gj} . During the period from time $t7$ to time $t8$, simultaneously with a B data signal B_j being supplied to the data line D_{bj} , a data control signal Asw_b experiences a change in potential from low level to high level, thereby rendering the selection transistor T_b in ON state. As a result, the selection transistor T_b selects and writes the B data signal B_j to the data line D_{bj} . In this manner, the data signals R_j , G_j , and B_j are respectively written to the data lines D_{rj} , D_{gj} , and D_{bj} .

[0150] During the period from time $t9$ to time $t10$, the current scanning line S_j experiences a change in potential from high level to low level, thereby rendering the writing transistor $T2$ in each of the subpixel circuits 11_r , 11_g , and 11_b in ON state. As a result, the second ground potential V_{gnd2} as below is simultaneously written to the second node $N2$ in each of the subpixel circuits 11_r , 11_g , and 11_b . More specifically, the second ground potential V_{gnd2} written to the R data line D_{rj} during the period from time $t3$ to time $t4$ is written to the second node $N2$ of the R subpixel circuit 11_r , the second ground potential V_{gnd2} written to the G data line D_{gj} during the period from time $t5$ to time $t6$ is written to the second node $N2$ of the G subpixel circuit 11_g , and the second ground potential V_{gnd2} written to the B data line D_{bj} during the period from time $t7$ to time $t8$ is written to the second node $N2$ of the B subpixel circuit 11_b .

[0151] Furthermore, at time $t9$, since the current scanning line S_j is set to low level, the compensation transistor $T3$ has a low-level voltage at the gate terminal. Accordingly, the compensation transistor $T3$ in each of the subpixel circuits 11_r , 11_g , and 11_b is rendered in ON state. As a result, the first ground potential V_{gnd1} with which the first node $N1$ of each of the subpixel circuits 11_r , 11_g , and 11_b has been charged during the initialization period is supplied to the third node $N3$, which is a connecting point between the first conductive terminal of the drive transistor $T1$ and the first conductive terminal of the compensation transistor $T3$, via the compensation transistor $T3$. Consequently, the third node $N3$ of each of the subpixel circuits 11_r , 11_g , and 11_b is set to the first ground potential V_{gnd1} .

3.3 Effects

[0152] In the present embodiment, since the first node $N1$ and the third node $N3$ in each of the subpixel circuits 11_r , 11_g , and 11_b are set at the first ground potential V_{gnd1} , and

the second node N2 is set at the second ground potential V_{gnd2} , the organic EL display device 1 is not powered off with any electric charge remaining in the subpixel circuits 11r, 11g, and 11b. Thus, since no electric charge remains in the pixel circuit when the organic EL display device is powered off, the transistors included in the pixel circuit 11 are kept from deteriorating, and no afterimage appears when the display part 10 displays another image by turning the power back on after the power off.

4. Other

[0153] The displays described herein are not limited to display panels with organic EL elements OLED, and may be display panels with electro-optical elements whose luminescence and/or transmittance are controlled by current. Examples of displays with such current-controlled electro-optical elements include EL displays, such as organic EL displays with organic light-emitting diodes (OLEDs) and inorganic EL displays with inorganic light-emitting diodes, and QLED displays with quantum-dot light-emitting diodes.

DESCRIPTION OF THE REFERENCE CHARACTERS

- [0154] 1 display device
- [0155] 10 display part
- [0156] 11 pixel circuit
- [0157] 11r, 11g, 11b subpixel circuit
- [0158] 15 first power supply
- [0159] 16 second power supply
- [0160] 20 display control circuit
- [0161] 30 data driver (data line driver circuit)
- [0162] 40 demultiplexing part
- [0163] 50 scan driver (scanning line driver circuit)
- [0164] 60 emission driver (control line driver circuit)
- [0165] D_j output line
- [0166] S_j scanning line
- [0167] E_j emission line (control line)
- [0168] T1 to T6 transistor
- [0169] C capacitor (capacitive element)
- [0170] ELVDD high-level power line
- [0171] ELVSS low-level power line
- [0172] V_{ini} initialization line

1. A method for driving an active-matrix display device for displaying an image by causing electro-optical elements to emit light, wherein,

the display device includes:

- a plurality of data lines to be supplied with data signals for displaying the image;
- a plurality of scanning lines disposed so as to cross the data lines;
- a plurality of pixel circuits provided at intersections of the data lines and the scanning lines;
- a data line driver circuit configured to supply the data signals respectively to the data lines; and
- a scanning line driver circuit configured to sequentially select and thereby activate the scanning lines at times when the data signals are supplied to the data lines corresponding to the scanning lines,

the pixel circuit includes:

- the electro-optical element;
- a drive transistor configured to control a current flowing in the electro-optical element and having a control terminal and a first conductive terminal elec-

trically connected when the scanning line corresponding to the pixel circuit is activated;

a first node connected to the control terminal;

a second node connected to a second conductive terminal of the drive transistor;

a data compensation circuit configured to compensate for changes of a threshold voltage of the drive transistor and hold a voltage between the control terminal and the first conductive terminal; and

an initialization circuit configured to initialize a potential on the first node, and

an OFF sequence involved in powering off the display device includes:

an initialization step for writing a first ground potential to the first node at some point during a period after the power off, in which a black display potential corresponding to black display data is supplied to the data lines, the first ground potential initializing the potential on the first node; and

a writing step for, when the corresponding scanning line is activated, writing a second ground potential to the second node through the data line so as not to electrically connect the control terminal and the first conductive terminal.

2. The method according to claim 1, wherein, transistors included in the pixel circuit are P-channel transistors, and the second ground potential is less than or equal to a potential obtained by adding the threshold voltage of the drive transistor to the first ground potential.

3. The method according to claim 1, wherein, transistors included in the pixel circuit are N-channel transistors, and the second ground potential is greater than or equal to a potential obtained by subtracting the threshold voltage of the drive transistor from the first ground potential.

4. The method according to claim 1, wherein, the initialization circuit includes an initialization line for supplying the first ground potential and an initialization transistor configured to electrically connect the initialization line and the first node, and the initialization step includes:

supplying the first ground potential to the initialization line after the power off;

rendering the initialization transistor conductive in accordance with an active preceding scanning signal outputted by the scanning line driver circuit; and writing the first ground potential from the initialization line to the first node via the initialization transistor.

5. The method according to claim 1, wherein, the display device further includes a power supply configured to supply a power supply voltage to the electro-optical element, and

in the initialization step, the first ground potential is written to the first node at a time when the power supply voltage is stopped from being supplied to the electro-optical element.

6. The method according to claim 1, wherein, the display device further includes a writing transistor configured to electrically connect the data line and the second node, and

the writing step includes:

supplying the second ground potential to the data line;
rendering the writing transistor conductive in accordance with a current scanning signal activating the corresponding scanning line; and
writing the second ground potential supplied to the data line to the second node.

7. The method according to claim 6, wherein, the data compensation circuit includes:

a compensation transistor configured to electrically connect the first conductive terminal and the control terminal of the drive transistor in accordance with a scanning signal provided by the scanning line driver circuit; and
a capacitive element configured to hold a voltage between the first conductive terminal and the control terminal,
the pixel circuit includes a third node connected to the first conductive terminal of the drive transistor, and
the writing step further includes:
rendering the compensation transistor conductive in accordance with the current scanning signal; and
writing the second ground potential written to the first node to the third node via the conductive compensation transistor.

8. The method according to claim 1, wherein, the display device further includes a plurality of select/output circuits configured to select color data signals from among a plurality of color data signals for displaying color images and supply the selected color data signals respectively to the data lines, the plurality of color data signals being included in data signals that are supplied from the data line driver circuit and correspond to a plurality of primary colors,
the pixel circuits include a plurality of subpixel circuits configured to cause the electro-optical elements to emit light in accordance with the color data signals,
the initialization step includes simultaneously writing the first ground potential supplied through the initialization line to the first nodes of the subpixel circuits,
the writing step includes:

writing the second ground potential sequentially to the data lines, the second ground potential corresponding to each of the primary colors selected by the select/output circuits; and
rendering the writing transistor conductive in accordance with a current scanning signal outputted by the scanning line driver circuit, thereby writing the sec-

ond ground potential simultaneously to the second nodes of the subpixel circuits through the data lines.

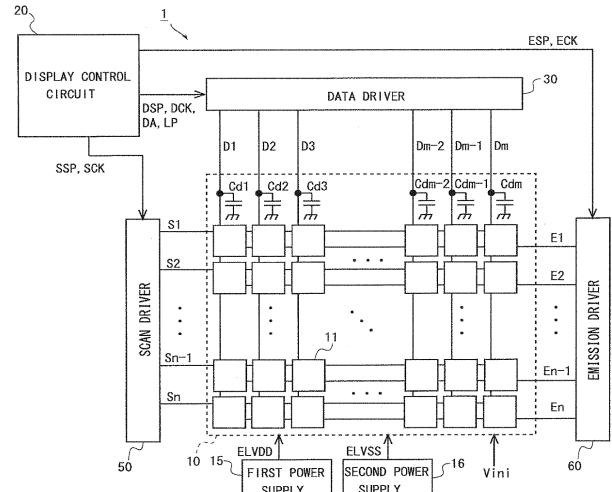
9. An active-matrix display device for displaying an image by causing electro-optical elements to emit light, the display device including:

a plurality of data lines to be supplied with data signals for displaying the image;
a plurality of scanning lines disposed so as to cross the data lines;
a plurality of pixel circuits provided at intersections of the data lines and the scanning lines;
a data line driver circuit configured to supply the data signals respectively to the data lines; and
a scanning line driver circuit configured to sequentially select and thereby activate the scanning lines at times when the data signals are supplied to the data lines corresponding to the scanning lines,

the pixel circuit includes:

the electro-optical element;
a drive transistor configured to control a current flowing in the electro-optical element and having a control terminal and a first conductive terminal electrically connected when the scanning line corresponding to the pixel circuit is active;
a first node connected to the control terminal;
a second node connected to a second conductive terminal of the drive transistor;
a data compensation circuit configured to compensate for changes of a threshold voltage of the drive transistor and hold a voltage between the control terminal and the first conductive terminal; and
an initialization circuit configured to initialize a potential on the first node,

when the display device is powered off, the initialization circuit writes a first ground potential to the first node at some point during a period in which a black display potential corresponding to black display data is supplied to the data lines, the first ground potential initializing the potential on the first node, and


when the corresponding scanning line is activated, the data compensation circuit writes a second ground potential to the second node through the data line so as not to electrically connect the control terminal and the first conductive terminal.

* * * * *

专利名称(译)	显示装置的驱动方法及显示装置		
公开(公告)号	US20200098316A1	公开(公告)日	2020-03-26
申请号	US16/494810	申请日	2017-03-22
[标]申请(专利权)人(译)	夏普株式会社		
申请(专利权)人(译)	夏普株式会社		
当前申请(专利权)人(译)	夏普株式会社		
[标]发明人	YOKOYAMA MAKOTO KOBAYASHI FUMIYUKI YAMADA JUNICHI		
发明人	YOKOYAMA, MAKOTO KOBAYASHI, FUMIYUKI YAMADA, JUNICHI		
IPC分类号	G09G3/3258 G09G3/20 G09G3/3275 G09G3/3266		
CPC分类号	G09G3/3266 G09G2330/027 G09G2320/0257 G09G3/3258 G09G2300/0842 G09G2300/0819 G09G3/3275 G09G3/2003 G09G3/3233 G09G2310/0245 G09G2310/0251 G09G2310/08 G09G2320/045		
外部链接	Espacenet	USPTO	

摘要(译)

提供了一种显示装置驱动方法和显示装置，两者均允许像素电路被放电而不会以关闭顺序留下任何电荷以关闭显示装置的电源。在OFF序列时段期间，第一节点N1被设置为第一接地电势Vgnd1，该第一接地电势Vgnd1高于初始化电势V_{伊尼}。结果，即使当第二接地电势V_{gnd2}通过数据线D_J提供给驱动晶体管T₁的第二导电端子时，驱动晶体管T₁的栅极端子也不是栅极-源极电压V_s充电。因此，有机EL显示装置1在驱动晶体管T₁的栅极端子被充电有第一接地电位V_{gnd1}的情况下被断电，电源后在像素电路11中没有电荷。关。

